ed: HW_2A, 2B, 2C (5.3,5.4,5.5)	2. Rewrite as integrals:
Substitution Rule	$\int dx =$
sk (Motivation):	$\int dx =$
the following derivatives	J un -
n Derivative?	dx
(2^2)) C
⁴)	dx =
<i>x</i>)	ſ
$))^{3}$	dx =
⊦1)	3. Guess and check the ar
y x))) ³ ⊢ 1)	$\int dx = 3.$ Guess and check the a

Close W

5.5 The 9

Entry Ta

1. Find t

Function	Derivative?
$\cos(x^2)$	
$sin(x^4)$	
$e^{\tan(x)}$	
$(\ln(x))^3$	
$\ln(x^4 + 1)$	

$$dx = \cos(x^2) + C$$
$$dx = \sin(x^4) + C$$
$$dx = e^{\tan(x)} + C$$
$$dx = (\ln(x))^3 + C$$
$$dx = \ln(x^4 + 1) + C$$

nswer to: $\int 7x^6 \sin(x^7) \, dx =$

Observations:

- 1. We are reversing the "chain rule".
- 2. In each case, we see

"inside" = a function inside another "outside" = derivative of inside

To help us mechanically see these connections, we use what we call:

The Substitution Rule:

If we write u = g(x) and du = g'(x) dx, then

$$\int f(g(x))g'(x)dx = \int f(u)du$$

Some theory

Recall:

 $\int_{a}^{b} f(g(x))g'(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(g(x_i))g'(x_i)\Delta x$

If we replace u = g(x), then we are "transforming" the problem from one involving x and y to one with u and y.

This changes *everything* in the set up. The lower bound, upper bound, widths, and integrand all change!

Recall from Math 124 that

 $g'(x) = \frac{du}{dx} \approx \frac{\Delta u}{\Delta x}$ (with more accuracy when Δx is small) Thus, we can say that $g'(x)\Delta x \approx \Delta u$ In other words, if the width of the rectangles using x and y is Δx , then the width of the rectangles using u and y is $g'(x)\Delta x$.

And if we write $u_i = g(x_i)$, then $\int_a^b f(g(x))g'(x)dx = \lim_{n \to \infty} \sum_{\substack{i=1 \\ n \to \infty}}^n f(g(x_i))g'(x_i)\Delta x$ $= \lim_{n \to \infty} \sum_{\substack{i=1 \\ n \to \infty}}^n f(u_i)\Delta u$ $= \int_{g(a)}^{g(b)} f(u)du$

Here is a visual example of this transformation

Examples:

First, try u = "inside function" 1. $\int x^4 (1 + x^5)^{31} dx$

$$2.\int \frac{\sin(\sqrt{x})}{\sqrt{x}} dx$$

$$3.\int_{2}^{3} x^2 e^{x^3} dx$$

$$4.\int \frac{x\sin(x^2)}{\cos^2(\cos(x^2))} dx$$

Examples:

Then, try u = "denominator"

$$1.\int_{0}^{1} \frac{x}{x^2 + 3} \, dx$$

$$2.\int \tan(x)\,dx$$

What to do when the "old" variable remains: *Examples*:

$$2.\int \frac{x^7}{x^4+1} dx$$

$$1.\int x^3\sqrt{2+x^2}\,dx$$